A Poroelastic-Viscoelastic Limit for Modeling Brain Biomechanics

نویسندگان

  • Md. Mehedi Hasan
  • Corina S. Drapaca
چکیده

The brain, a mixture of neural and glia cells, vasculature, and cerebrospinal fluid (CSF), is one of the most complex organs in the human body. To understand brain responses to traumatic injuries and diseases of the central nervous system it is necessary to develop accurate mathematical models and corresponding computer simulations which can predict brain biomechanics and help design better diagnostic and therapeutic protocols. So far brain tissue has been modeled as either a poroelastic mixture saturated by CSF or as a (visco)-elastic solid. However, it is not obvious which model is more appropriate when investigating brain mechanics under certain physiological and pathological conditions. In this paper we study brain’s mechanics by using a Kelvin-Voight (KV) model for a one-phase viscoelastic solid and a Kelvin-Voight-Maxwell-Biot (KVMB) model for a two-phase (solid and fluid) mixture, and explore the limit between these two models. To account for brain’s evolving microstructure, we replace in the equations of motion the classic integer order time derivatives by Caputo fractional order derivatives and thus introduce corresponding fractional KV and KVMB models. As in soil mechanics we use the displacements of the solid phase in the classic (fractional) KVMB model and respectively of the classic (fractional) KV model to define a poroelasticviscoelastic limit. Our results show that when the CSF and brain tissue in the classic (fractional) KVMB model have similar speeds, then the model is indistinguishable from its equivalent classic (fractional) KV model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of different material theories used in a FE model of a lumbar segment motion.

In this study, a nonlinear poroelastic model of intervertebral disc as an infrastructure was developed. Moreover, a new element was defined consisting a disc (Viscoelastic Euler Beam Element) and a vertebra (Rigid Link) as a unit element. Using the new element, three different viscoelastic finite element models were prepared for lumbar motion segment (L4/L5). Prolonged loading (short-term and l...

متن کامل

Skinfold creep under load of caliper. Linear visco- and poroelastic model simulations.

PURPOSE This paper addresses the diagnostic idea proposed in [11] to measure the parameter called rate of creep of axillary fold of tissue using modified Harpenden skinfold caliper in order to distinguish normal and edematous tissue. Our simulations are intended to help understanding the creep phenomenon and creep rate parameter as a sensitive indicator of edema existence. The parametric analys...

متن کامل

Design and numerical implementation of a 3-D non-linear viscoelastic constitutive model for brain tissue during impact.

Finite Element (FE) head models are often used to understand mechanical response of the head and its contents during impact loading in the head. Current FE models do not account for non-linear viscoelastic material behavior of brain tissue. We developed a new non-linear viscoelastic material model for brain tissue and implemented it in an explicit FE code. To obtain sufficient numerical accurac...

متن کامل

A Mathematical Investigation of the Role of Intracranial Pressure Pulsations and Small Gradients in the Pathogenesis of Hydrocephalus.

Cerebrospinal fluid (CSF) pulsations have been proposed as a possible causative mechanism for the ventricular enlargement that characterizes the neurological condition known as hydrocephalus. This paper summarizes recent work by the authors to anaylze the effect of CSF pulsations on brain tissue to determine if they are mechanically capable of enlarging the cerebral ventricles. First a poroelas...

متن کامل

Plane Strain Deformation of a Poroelastic Half-Space Lying Over Another Poroelastic Half-Space

The plane strain deformation of an isotropic, homogeneous, poroelastic medium caused by an inclined line-load is studied using the Biot linearized theory for fluid saturated porous materials. The analytical expressions for the displacements and stresses in the medium are obtained by applying suitable boundary conditions. The solutions are obtained analytically for the limiting case of undrained...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015